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Fixed-node quantum Monte Carlo 

by JAMES B. ANDERSON 
Department of Chemistry, The Pennsylvania State University, 152 Davey 

Laboratory, University Park, Pennsylvania 16802, USA 

Quantum Monte Carlo methods cannot at present provide exact solutions of the 
Schrodinger equation for systems with more than a few electrons. But, quantum 
Monte Carlo calculations can provide very low energy, highly accurate solutions 
for many systems ranging up to several hundred electrons. These systems include 
atoms such as Be and Fe, molecules such as H20, C b ,  and HF, and condensed 
materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions 
of their energies and structures may not be ‘exact’, but they are the best available. 
Most of the Monte Carlo calculations for these systems have been carried out using 
approximately correct fixed nodal hypersurfaces and they have come to be known 
as ‘fixed-node quantum Monte Carlo’ calculations. In this paper we review these 
‘fixed node’ calculations and the accuracies they yield. 

1. Introduction 
Most quantum chemists are aware that quantum Monte Carlo methods have proved 

remarkably successful in  providing accurate predictions of energies and structures for 
molecular systems containing a few electrons. The first quantum calculation to achieve 
an absolute accuracy of 1-0 microhartree for a polyatomic system was a quantum Monte 
Carlo calculation [ l ]  for the H: molecular ion. The first to achieve an accuracy of 
0.01 kcal mol - ’ in the potential energy surface for the reaction H + H2 -+ H2 + H was 
a quantum Monte Carlo calculation [2]. The first to achieve an absolute accuracy of 
0.1 K for the dimer He-He was a quantum Monte Carlo calculation [3] 12 000 times 
more accurate in absolute energy than the lowest-energy analytic variational 
calculation. For these systems and for other systems of a few electrons, such as LiH 
[4], HeH [5] ,  and H2 [6], quantum Monte Carlo methods can provide solutions of the 
time-independent Schrodinger equation without systematic error [7]. 

For larger systems neither quantum Monte Carlo methods not analytic variational 
methods can at present provide such exact’ results. However, for many of these larger 
systems quantum Monte Carlo calculations provide the lowest-energy, most accurate 
results available. The systems include atoms such as Be [8] and Fe [9], molecules such 
as H20 [lo], CH4 [ I  11, and HF [ 121, and cofldensed materials such as solid NZ [ 131 and 
solid silicon [14]. The quantum Monte Carlo results for these systems may not be 
‘exact’, but they are the best available. Most of the Monte Carlo calculations for these 
systems have been carried out using approximately correct fixed nodal hypersurfaces 
and they have come to be known as ‘fixed-node quantum Monte Carlo’ calculations. 
The purpose of this review is to make quantum chemists aware of these ‘fixed-node’ 
calculations and the accuracies they yield for systems ranging from a few electrons to 
several hundred electrons. 

The fixed-node method is the first of several methods available for incorporating 
theeffects of particle indistinguishability in quantum Monte Carlo calculations [ 15, 161. 
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86 J.  B. Anderson 

For systems of electrons it allows the introduction of the Pauli exclusion principle by 
the specification of nodal hypersurfaces in the configuration space of the electrons 
separating that space into positive and negative regions such that the overall 
wavefunction is antisymmetric to the exchange of electrons. It is thus one solution to 
the ‘sign problem in fermion Monte Carlo’. Since the nodal hypersurfaces are not 
specified by symmetry except in special cases, they cannot in general be specified 
exactly except by complete solution of the problem. However, approximately correct 
nodal hypersurfaces may be obtained from approximate solutions, and the use of such 
‘fixed-nodes’ in quantum Monte Carlo calculations can lead to highly accurate 
solutions. 

In this chapter we review the fixed-node quantum Monte Carlo method, a little bit 
of its history, its formulation, its positive and negative aspects, and its prospects for 
further development. We also review its applications. These now include more than one 
hundred studies of molecular systems large and small as well as condensed-matter 
systems. 

We begin with a description of the diffusion quantum Monte Carlo method (DQMC) 
for the solution of the many-electron Schrodinger equation and continue with a 
discussion of the related Green function quantum Monte Carlo method (GFQMC). 
We then outline the characteristics of nodal hypersurfaces for atomic and molecular 
wavefunctions, their use in fixed-node calculations and some of the practical 
considerations required for the successful implementation of these calculations before 
proceeding to the applications. 

2. Diffusion quantum Monte Carlo 
The diffusion quantum Monte Carlo method of solving the time-independent 

Schrodinger equation consists of a simple game of chance involving the random walks 
of particles through space and their occasional multiplication or disappearance. It is 
based on the similarity between the Schrodinger equation and the diffusion equation 
(i.e., Fick’s second law of diffusion) and the use of the random walk process to simulate 
the diffusion process. The equivalence of the two equations was noted as early as 1932 
by Wigner [ 171. A random walk simulation of the Schrodinger equation was suggested 
by Fermi in the 1940’s and was discussed by Metropolis and Ulam [18] and by King 
[19] in 1949. A number of related techniques were proposed and discussed in 
succeeding years, but it was not until fast computers became available that applications 
to multicentre chemical systems became practical [15]. 

The equation to be solved is the time-independent Schrodinger equation, 

or 
HY = E Y ,  

h2 
2mi 

- C - V : Y ( X )  + V ( X ) Y ( X )  = E Y ( X ) ,  

where the summation is over the electrons or other particles i having masses mi and the 
nomenclature is standard. For simplicity we consider the equation for a single particle 
of mass m, rearranged to become 

h2 
2m 
- V 2 Y ( X )  - V ( X ) Y ( X )  = - E Y ( X ) .  (3) 

The equation has as solutions the wavefunctions Y o ( X ) ,  Y l ( X ) ,  ... which exist only 
for specific energies Eo, El ,  . . . . 
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Fixed-node quanfum Monte Carlo 87 

The wavefunction may be treated as a function of an additional variable t defined 

(4) 

according to 

Y ( X ,  t) = Y(X) exp ( - Et), 
The function then behaves according to 

= -EY(X,t), a wx, 7) 
a7 

and we have 

( 5 )  

The function Y(X, z) in (6) may be considered general, but at large values of z its 
solution is given by the Y(X,r) of (4) corresponding to the lowest-energy or 
ground-state wavefunction for the system. Since the higher states decay faster according 
to (4) an arbitrary initial function consisting of a sum of terms containing the 
wavefunctions for the ground-state and any or all the.higher states decays to 
the ground-state wavefunction. The arbitrary initial function evolves to the ground-state 
solution of the time-independent Schrodinger equation. 

Because of its similarity to the time-dependent Schrodinger equation, (6) is often 
referred to as the Schrodinger equation in imaginary time. The analogy is formally 
correct since solutions of the time-dependent Schrodinger equation have equivalent real 
and imaginary parts under steady-state conditions. 

The Schrodinger equation in imaginary time z has the same form as the diffusion 
equation with an added first-order reaction term, 

-- ac(x’f) - DV2C(X, t )  - kC(X, t ) .  
at 

(7) 

The concentration C corresponds to the wavefunction Y ,  the diffusion coefficient D 
corresponds to the group h2/2m, and the rate constant k corresponds to the potential 
energy V. 

Differential equations are normally used to model the behaviour of physical systems 
and the diffusion equation above is normally used to model the behaviour of a system 
in which particles undergo diffusion by a random walk process. In quantum Monte 
Carlo calculations the random walk process is used to simulate the differential equation. 
Of course, the connection between the random walk process and quantum mechanics 
may be considered to be direct. In the absence of the Schrodinger equation one might 
still use the Monte Carlo method to obtain solutions to quantum mechanical problems, 
but the connection between random walks and quantum mechanics is most easily made 
with the aid of the Schrodinger equation as above. 

The random walk process and the diffusion equation are related through the 
diffusion coefficient by the Einstein equation [20], 

which gives the diffusion coefficient for particles moving a distance Ax at random 
positive or negative at intervals of time At. In the simulation of the Schrodinger equation 
in imaginary time the time and distance steps are chosen to produce the appropriate 
value of D (or fi2/2m) given by (8 ) .  
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88 J. B. Anderson 

L x -  0 

Figure 1 .  Illustration of the diffusion quantum Monte Carlo method for the problem of the 
particle-in-a-box. 

The standard quantum mechanical problem of the particle in a one-dimensional box 
serves to illustrate the diffusion quantum Monte Carlo method. The box is illustrated 
in figure 1 .  The potential energy inside the box, within the region 0 < x < L, is zero. 
Outside the box, forx < 0 and x > L, the potential energy is infinity. An initial collection 
of particles, typically called ‘walkers’ or ‘psi-particles’ or ‘psips’ in order to distinguish 
them from the ‘particle-in-the-box’, is distributed in the region 0 < x  < L. Time is 
advanced one step AT. To simulate the diffusion term of (7) each psip is moved right 
or left at random a distance Ax. To simulate the multiplication term of (7) each psip 
then gives birth to a new psip with a probability P b  = - VAT if V is negative or 
disappears with a probability Pd = VAT if V is positive. Time is advanced another step 
and the process is repeated. If the number of psips falls below an acceptable lower limit 
or increases beyond an acceptable upper limit, their number may be adjusted by the 
random multiplication or removal of psips present. (Caution: In making such 
adjustments one must be very careful to avoid introducing any bias.) For the 
particle-in-a-box as specified psips diffuse to the walls and disappear on encountering 
the infinite potential energy, but they are replaced by psips multiplying within the box. 
After a large number of iterations the distribution of psips approaches a fluctuating 
‘steady-state’ distribution-the function sin(m/L)-which corresponds to the 
wavefunction for the ground state of the particle in the box. 

The game is readily extended to problems having a higher number of dimensions 
and is clearly most useful for problems in which the number of dimensions is large. 
A system of n electrons free to move in three dimensions each can be simulated by a 
collection of psips moving in 3n dimensions each. 

The first application of the DQMC method to molecular systems was made in our 
laboratory [15] with a calculation of the energy of the H: molecular ion. 
The Schrodinger equation in imaginary time for the two-electron H: system with three 
nuclei fixed is given, in atomic units by 

a y  - _  - )v:Y+*v;Y-vY. 
ax  (9) 

With the electrons labelled 1 and 2 and the three protons labelled A,  B, C the potential 
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Fixed-node quantum Monte Carlo 89 

energy V, exclusive of internuclear terms, is 

v = 
1 1 1 1 1 1 1  

r1A rlB rlc r u  r u  r2c r12 
+ - 9  (10) 

in which rIA is the distance between electron 1 and protonA and so forth. It is convenient 
to introduce a reference potential Vref so that the-operating equation becomes 

- __ - - - - - - - - - - 

In terms of the diffusion equation we then have D = 112 and k = ( V  - Vref). 
The random walk in six dimensions was executed with non-uniform step sizes in 

each dimension selected from a Gaussian distribution with probabilities P of step sizes 
Ax given by 

1 (W2 P(&) = - (251.)"20 exp [ - 3 1 .  
The probability of birth was given by Pb = - ( V  - V,f)Ar for ( V  - Vref) less than zero 
and the probability of disappearance was given by Pd = (V - Vref)AT for ( V  - V,f) 
greater than zero. After each move a random number in the interval (0 , l )  for each psip 
was compared with Pb (or Pd) and if smaller than Pb (or Pd) then a birth (or death) was 
completed. 

The calculations were begun with a collection of 1000 psips in positions 
corresponding to electron configurations in the region of the nuclei. A large time step 
was used for a rapid approach to a steady-state distribution. The step size was decreased 
as time progressed and fixed at a small value to improve the accuracy of the results in 
the accumulation of data after steady-state was reached. 

In order to maintain the number of psips approximately constant the arbitrary 
reference potential Vref was adjusted at the end of each time step. (To avoid bias, a large 
delay prior to adjustment is advised.) At steady-state the energy E corresponding to a 
wavefunction Y may be evaluated using (5) rearranged as 

For a given distribution the wavefunction is proportional to the total number of psips 
N and one has 

1 aN E =  
N a t  

In the case of the ground state of H:, which has no boundaries serving as sinks or 
sources for psips, the total number of psips is not directly affected by the diffusion terms 
of (9) but changes according to 

The energy was thus given by the average potential energy v according to 

E=V.  (16) 
After steady-state was reached the energies at each time step were retained for a 
subsequent determination of the overall average for a large number of samples. 

There are five important sources of error in these first diffusion Monte Carlo 
calculations: (a)  statistical or sampling error associated with the limited number of 
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90 J. B. Anderson 

independent sample energies used in determining the energy from an average of variable 
potential energies, (b) the use of a finite time-step AT rather than an infinitesimal 
time-step as required for the exact simulation of a differential equation, (c) numerical 
error associated with truncation and/or round-off in computing, (d) imperfect random 
number quality, ( e )  failure of the distributions to reach the steady-state or equilibrium 
distributions in a finite number of steps. Sources (c), (4, and (e )  are common problems 
in computing. They can be detected relatively easily and eliminated, and they were not 
found to limit the calculations in any significant way. Sources (a) and (b) seriously 
limited the accuracy of the early calculations for H:. The energy for this nodeless 
system was found to be - 1.343 hartrees, and the uncertainty in that energy, due largely 
to a combination of time-step error and statistical error, was t 0.013 hamees. Twenty 
years of refinement of methods, together with faster computers, has reduced that 
uncertainty by a factor of 13 OOO to t 0-000001 hartree [ 11- 

For systems containing two or more electrons of the same spin or other 
indistinguishable particles, an additional problem appears: the node problem. For these 
systems it is necessary to restrict the form of the total wavefunction (space and spin 
parts) such that it is antisymmetric to the exchange of electrons. For any electronic state 
other than the ground state it is necessary to restrict further the properties of the 
wavefunction. The effect of these restrictions is the imposition of nodal surfaces, on 
which Y ( X ) = O ,  in the space part of the wavefunction. For systems of a few 
electrons-H2 [6], H-H-H [2], He-He [3], H-He [5]-the node problem can be 
overcome by exact cancellation methods [21] and ‘exact’ solutions (i.e., solutions free 
of systematic error) can be obtained. For systems of as many as ten electrons [22] 
released-node or transient-estimate methods can provide excellent approximate 
solutions. But, in general, the method of choice for systems of more than about ten 
electrons is the fixed-node method. Although the fixed-node method is variational in 
nature and does not yield exact results, it is the only choice available for quantum Monte 
Carlo calculations on many larger systems. The fixed-node method is remarkably 
accurate, and it generally yields energies well below those of the best available analytic 
variational calculations. 

3. Green function quantum Monte Carlo 
For certain boundary conditions the diffusion equation may be solved with the use 

of standard Green function methods, and the diffusion equation with an added first-order 
reaction term may be treated by these methods. The Green function quantum Monte 
Carlo method is similar to the DQMC method but takes advantage of the properties of 
Green functions in eliminating time-step entirely in treating the steady-state equation. 
The GFQMC method makes possible very large step sizes, but some of the advantages 
of large steps are lost for fixed-node calculations. The Green function quantum Monte 
Carlo method was proposed by Kalos [23] for nodeless systems. Procedures for 
introducing fixed nodes were developed later. 

The time-independent Schrodinger equation, (3) ,  may be written in the form 

where 

2mE p = - -  n2 . 
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Fixed-node quantum Monte Carlo 91 

To keep k2 positive the energy must be made negative. This can be done by adjusting 
the reference or zero of the potential energy by an appropriate offset of energy. 

The Green function for (17) which satisfies the boundary conditions for a problem 
in electronic structure (i.e., Y + O  as X +  03) is known and is given by 

where K, is the modified Bessel function of the second kind. 
The Green function method is carried out iteratively with steps analogous to time 

steps. Repetitive sampling is based on the property of the Green function which 
reproduces the wavefunction from itself, 

The repeated application of (20) to an initially arbitrary wavefunction Y(X’) 
produces a wavefunction Y ( X )  which is the lowest-energy solution to the Schrodinger 
equation for the boundary conditions specified. A psip in the distribution !P(X’) may 
be transferred to the distribution ‘Y(X) ,  by multiplying its weight by V(X’) /E,  sampling 
the Green function distribution Go(X, X ’ ) ,  and moving the psip to its new position X .  
Repetition for an initially arbitrary collection of psips leads to a set of psips which is 
a sample of points from the lowest-energy wavefunction for the boundary conditions 
and any other constraints imposed. As in DQMC the calculations must be carried out 
until a ‘steady-state’ distribution is obtained and sampling is carried out by continuing 
the calculations. 

The imposition of additional boundaries corresponding to nodes for fixed-node 
calculations has been described by Ceperley [24], by Skinner ef al. 12.51, and by 
Moskowitz and Schmidt [26]. The procedures involve conditional sampling together 
with smaller steps for psips in the vicinity of the nodes. 

4. The fixed-node method 
The fixed-node method was proposed in our 1975 paper [ 151 on diffusion quantum 

Monte Carlo and was immediately attacked as being inadequate [27]. We were, of 
course, aware of its limitations and recognized that exactly correct nodal hypersurfaces 
could not be obtained except from complete solutions of the Schrodinger equation. 
By the time our first paper appeared in print we had obtained rather good approximate 
results using the fixed-node method for several small systems-H 2P, HZ ’X:, H4 ’C,,  
Be ‘ S  [16]. 

The fixed-node method is most easily illustrated for the case of the first excited state 
of a particle in a two-dimensional rectangular box. The wavefunction for the first excited 
state has a nodal surface which is a line dividing the region into two sections-one in 
which the wavefunction is positive and the other in which the wavefunction is 
negative-as shown in figure 2(a) .  The wavefunction is zero at the nodal line. For 
electronic systems one knows something about the symmetry of the wavefunction: it 
is antisymmetric to the exchange of electrons of opposite spin. Let us suppose one 
knows something similar about the symmetry of the first excited state of the patticle 
in the box: it is antisymmetry to inversion through the centre of the box. A wavefunction 
having that antisymmetry could have one of the nodal lines illustrated in figure 2 (6) 
as well as the correct nodal line shown in figure 2(a) .  Any one of those lines has the 
required symmetry and could serve as a nodal line for a wavefunction with inversion 
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92 J .  B. Anderson 

Figure 2 Nodal lines for the first excited state of a particle in a two-dimensional rectangular 
box. In (a) the correct node line is shown by the solid line. In (b) possible fixed-node lines 
of inversion symmetry, for a wavefunction with antisymmetry to inversion, are shown by 
dotted and dashed lines. 

symmetry. A diffusion Monte Carlo calculation can be carried out with an assumed 
nodal line serving as a boundary along which the wavefunction is zero. The boundary 
divides the overall space into two regions of the same shape so that one calculation is 
sufficient to determine the wavefunction and energy for both. The Schrodinger equation 
is solved exactly within the boundaries. 

Unless the assumed nodal surface is exactly correct the overall wavefunction will 
not be exactly correct and the energy obtained will be an upper bound to the true energy. 
The fixed-node method is thus variational with respect to node locations. If the nodes 
are wrong the calculated energy will be higher than the true energy. (Otherwise, an 
analytic variational calculation would yield a wavefunction having incorrect nodes and 
an energy lower than the true energy.) Nevertheless, it is our experience and the 
experience of others that wavefunctions having nodes which are approximately correct 
yield excellent energies. Approximately correct nodal surfaces are most readily 
available from approximately correct wavefunctions provided by analytic variational 
calculations. 

Fixed-node calculations may be carried out using the simple diffusion quantum 
Monte Carlo procedure described above. The nodal surface typically divides the 
configuration space into identical regions such that a calculation in only one region is 
required. The boundary condition of Y = 0 at the nodal surface is enforced by 
eliminating (killing) any psip which diffuses across a node. Energies may be calculated 
from the growth rate as described above using (14), but (1 6) is not applicable since psips 
may disappear at the boundaries. 

The molecule H2 in its triplet state 'XC,' was one of the first molecules to be treated 
using the fixed-node quantum Monte Carlo method and it serves as a simple example. 
It has two electrons of like spin and a single nodal surface of five dimensions in the 
six-dimensional configuration space of the electrons, but because of symmetries 
the nodal surface is easily illustrated. The early variational calculations of James, 
Coolidge, and Present [28] give a fairly good energy and a reasonably accurate 
wavefunction for an internuclear distance of 1.6 bohrs. Their calculations were made 
with a number of approximate wavefunctions of increasing complexity and flexibility. 
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In figure 3 we reproduce plots of two of these functions made for our earlier discussion 
[ 161. The nodal structures are shown by two series of plots in which the positions of 
the two nuclei and the first electron are fixed and the sign of the wavefunction is 
indicated according to the position of the second electron. For the functions used by 
James, Coolidge, and Present [28] this sign is a function only of the position of the 
second electron along the axis of the molecule and its radial distance from the axis. Thus, 
the two-dimensional plots of figure 3 are adequate to indicate the nodal surface. We 
note that there is a very significant difference in the nodal structures of the two 
variational wavefunctions. For the wavefunction identified as F there is much more 
curvature than for the wavefunction identified as H. Near the centre of the system for 
function F and over a large region for function H the nodal structure resembles a planar 
structure for which Y = 0 for 21 = 22 where zi is the distance along the axis for electron 
i .  The variational calculation for function H gives a slightly lower energy than 
that for function F. 

Fixed-node calculations [ 161 for H2 'ZC: at an internuclear separation of 1-4 bohrs 
were camed out using a nodal surface given by Y = 0 for 21 = z 2  as suggested by the 
plots of figure 3. The calculations were performed with different values for the time 
step using a modified version of the basic procedure designed to reduce the time-step 
error. The results are reproduced in figure 4. The values obtained for the energy, 
- 0.7851 t 0-0036 hartrees at a time step of 0.010 atomic units and 
- 0.7799 I+_ 0-0041 hartrees at a time step of 0.020 atomic units were in excellent 
agreement with the value of - 0.783 1 hartrees obtained in analytic variational 
calculations by Kolos and Roothaan [29]. A more accurate value from more recent 
calculations is - 0.7842 hartrees [30]. 

Early fixed-node calculations [3 1 ] were made for the €& square and helped to resolve 
an apparent conflict between experiment and theory on the mechanism for the four-body 
exchange reaction H2 + D2 -) HD + HD. Experimental measurements of the rate of 
reaction by Bauer and Ossa [32] and by a number of other workers [33] indicated an 
activation energy of 35-45 kcal mol - I and rate expressions consistent with a direct 
bimolecular mechanism. Analytic variational calculations by Wilson and Goddard [34], 
Rubinstein and Shavitt [35], Silver and Stevens [36] and others predicted barrier heights 
of 115kcalmole-' or greater for a variety of bimolecular reaction paths. There 
appeared to be no explanation of the experimental results other than a bimolecular 
reaction, but the analytic predictions appeared to exclude that possibility. Any doubts 
about the accuracies of the analytic calculations had to be centred on possible 
inadequacies in the basis sets used. The basis sets for the variational calculations were 
all similar. The fixed-node quantum Monte Carlo calculations, for several different 
nodal surfaces derived from analytic variational calculations, gave nearly identical 
results and indicated a barrier no lower than 120kcal mole- I .  This independent 
conclusion, reached without the use of a basis set, gave increased confidence in the 
theoretical predictions. Eventually, the earlier interpretations of the experiments were 
found to be in error and the observed results were attributed to reactions involving 
oxygen contaminating the system. 

For the €€, square in the lBlg state the energy calculated with a nodal surface taken 
from a variational calculation with a single-zeta basis set was lower than the expectation 
value of the energy calculated with the same basis set. For the H4 square in the 'BI, 
state the energy calculated using the simplest nodes meeting the symmetry requirements 
was found to be 65kcalmole-' below the expectation value of the energy for a 
double-zeta basis set. This general pattern is not at all unusual for comparisons of 
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Figure 3. Node locations in calculations of James, Coolidge, and Present [28] for HZ 'C: . 
The protons are indicated by open circles, the first electron by a filled circle, and the node 
by a dashed line. Function F: (a)+). Function H: (e)-(h). The sign of the wavefunction 
is indicaied according to the position of the in its triplet state second electron. 
From Anderson [ 161. 
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Fixed-node quantum Monte Carlo 95 

quantum Monte Carlo results with analytic variational results for small molecular 
systems. The total energies are usually significantly lower for the QMC calculations, 
and the relative energies-those yielding barrier heights, potential energy curves, and 
similar features of potential energy surfaces-are usually in fairly good agreement. 
This is the sort of behaviour one should expect when both types of calculations are 
correct within the accuracy expected. 

5. Importance sampling for reduced variance 
In principle, one should be able to take advantage of prior knowledge of the 

properties of wavefunctions to make quantum Monte Carlo calculations more efficient. 
Such prior knowledge is available in the form of wavefunctions from analytic 
variational calculations at several levels of approximation. It is possible to obtain very 
high accuracies by extending diffusion quantum Monte Carlo calculations to calculate 
corrections to trial wavefunctions rather than the complete wavefunction [37]. Repeated 
calculations produce successive corrections of smaller size and greater detail, but the 
method is not easily extended to large systems. Another means for variance reduction, 
now called ‘importance sampling’, was introduced by Grimm and Storer [38] in 1971. 
It is now the most widely used and most successful means for improving the accuracies 
of diffusion and Green function QMC calculations. 

To obtain the importance-sampling version of diffusion quantum Monte Carlo, we 
first multiply the basic equation, (6), by a trial wavefunction Yl  and define a new term 
f = YYl  which is the product of the true wavefunction and the trial wavefunction. 
After considerable rearrangement we obtain the basic equation for diffusion QMC with 
importance sampling, 

The equation has terms on the right side corresponding to diffusion of psips with 
a diffusion coefficient of fi2/2m, a drift term with a velocity given by Vln Y,, and a 
first-order rate term for the disappearance of psips with a rate constant given by the local 
energy El, = HYYJY, for the trial wavefunction. 

In diffusion QMC the simulation of (21) is camed out in the same way as the 
simulation of (6) except that additional psip movement is required by the drift term and 
psip multiplication depends on the local energy rather than the potential energy. If the 
trial function is simply a constant the drift term is zero, the local energy is equal to 
the local potential energy, and the expression reduces to that for diffusion without 
importance sampling. 

The nature of the drift term is such as to produce a drift of psips in the direction 
of higher Yl. The psips are thus concentrated in the more important regions and their 
distribution, if !PI is accurate, approximates that of Y2, the square of the true 
wavefunction. In the vicinity of a nodal surface the velocity, which may be written as 
VYYJY,, is increased and as !PI approaches zero at the nodal surface, the drift velocity 
approaches infinity in a direction away from the surface. Psips are thus prevented from 
crossing the nodes of the trial function. 

The computation procedure for diffusion with drift is similar to that of the basic 
random walk procedure described above. At each time step the values of El, = HY’J’Pl 
and the drift velocity V In ‘Y, must be determined from the potential energy and from 
the first and second derivatives of the trial wavefunction. The drift distance is given by 
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96 J .  B. Anderson 

the product of the vector drift velocity and the time step. Multiplication is based on the 
local energy. 

A calculation generates a distribution of psips with a concentration corresponding 
to the value of the functionf= YYr. For the determination of energies an average of 
local energies is used. Following G r i m  and Storer [38] one can obtain the expression 
giving the energy as the average of local energies for the f-particles or psips. Multiplying 
the time-independent Schrodinger equation by the trial function we obtain at any point 

YtHY = YrEY. (22) 

Integrating over all space yields I Y,HYdX= I 
The Hermitian properties of wavefunctions, 
symmetries, allow a permutation to yield 

YEY,dX. (23) 

for identical boundary conditions and 

which may be rewritten as 

This may be rearranged to give the energy as 

or 

The equivalent Monte Carlo expression, for equally weighted samples based onf, gives 
the energy as the average of local energies, 

The first applications in diffusion Monte Carlo were made for the nodeless ground 
state of the molecular ion H: [39]. The effect was a substantial improvement in 
accuracy from an energy of - 1.3414 ? 0.0043 hartrees in an earlier calculation to 
- 1.3439 4 0.0002 hartrees in a similar calculation using importance sampling. The 
statistical error is reduced by a factor of about 20 and any systematic error is presumed 
to be similarly reduced. 

The nodes of the trial function become the fixed nodes of the'wavefunction Y which 
is the exact solution for the Schrodinger equation for boundary conditions correspond- 
ing to the fixed nodes. As for simple diffusion with fixed nodes the energy determined 
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is an upper bound to the true energy. Trial wavefunctions from any source may be used 
for importance sampling but they must have the appropriate symmetry for the desired 
electronic state. Since no analytic integrations are required, the functional form is not 
restricted to integrable expressions such as those of analytic variational wavefunctions. 
The inter-electronic distances rii may be included explicitly. Adjustable parameters in 
the trial wavefunction may be optimized without integrations. 

Early calculations for molecular systems with nodes include the systems H-H-H 
[40,41], LiH [42], HzO [lo], CI€+ [I 13, and HF [12]. The trial wavefunctions for most 
of these calculations were taken from relatively simple analytic variational calculations, 
in most cases from calculations at the self-consistent field (SCF) level. The typical 
function was that for the 10-electron system methane [ 1 13 with an SCF trial function 
given by the product of the SCF function, which is a ten-by-ten determinant made up 
of two five-by-five determinants, and a Bijl or Jastrow function for each pair of 
electrons, 

The values of b and c were specified as 1/2 for pairs of electrons with opposite spins 
and as 114 for pairs with identical spins. This avoids infinities in the local energy for 
two electrons at the same position. The Jastrow functions incorporate the main effects 
of electron-electron interactions and give a significant improvement over simple SCF 
trial functions. More accurate, more flexible expressions are available. 

6. Time-step error in DQMC 
In diffusion quantum Monte Carlo the Schrodinger equation in imaginary time is 

a differential equation applicable to infinitesimal changes in time, position, and weight 
of psips. It is simulated by numerical methods using finite time steps and the results 
are exact only in the limit of small time-step sizes. The algorithms first used were crude 
and severely limited the accuracy of the calculations, but newer algorithms are much 
improved and time-step errors have been reduced by several orders of magnitude. 
The effect has been to improve greatly the accuracy of fixed-node calculations, not only 
in reducing time-step error directly but also in reducing statistical error by allowing 
calculations spanning much greater periods of time with larger step sizes. 

The problems of reducing time-step error are very nearly the same as those 
encountered in the integration of the classical equations of motion for a single particle 
in a force field. In reducing time-step error several workers have drawn upon existing 
methods, such as the predictor-corrector method, but much of the success in reducing 
time-step error has evolved using techniques specific to the diffusion QMC problem. 

The most obvious steps were taken by Anderson [16]. These were integration of 
the growth term over the length of a step to obtain for the new weight of a psip 
W(new) = W(old) exp [ - (V - V,f)Az] rather than W(new) = W(old)[ 1 - (V - V,f)Az] 
and, for pure diffusion QMC, a correction factor to account for crossing and recrossing 
a nodal surface. A predictor-corrector method, in which a trial step was used to 
estimate the drift velocity at the end of a step so that an average drift velocity over the 
step could be estimated, was reasonably successful [43]. More elaborate schemes of a 
similar nature were developed by Rothstein and Vrbik [44] in the quest for an algorithm 
giving a quadratic dependence on time-step size. 

One device which has proved to be surprisingly successful is the use of an 
acceptance or rejection criterion for moves proposed by Reynolds e f  al. [lo]. A move 
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is selected on the basis of a random diffusion step coupled with a drift step and accepted 
with a probability given by the square of the ratio of the trial wavefunction at the 
new position to that of the trial wavefunction at the old position. This has the 
effect of introducing reversibility in the limit of small steps-clearly a desirable 
attribute-but a complete justification of the procedure for finite time steps is not 
available. The real justification for the procedure is its observed success in reducing 
error. The procedure may not be intuitively acceptable for finite time steps, but it is 
certainly acceptable in the limit of small steps and it works extremely well. 

Other schemes for reducing time-step error involve multiple or correlated sampling 
and differential sampling as suggested by Garmer 1451. Multiple importance-sampling 
or guide functions [43] have also been used. The optimum choices of step sizes have 
been examined in detail [46]. 

The most recent algorithm, developed by Umrigar, Nightingale, and Runge [8], is 
clearly the most successful. It takes advantage of good trial wavefunctions constructed 
with special attention to satisfying the cusp conditions, includes the acceptancehejec- 
tion procedure, modifies the choice of steps to account for non-analyticities in the local 
energy and velocities, and eliminates the possibility of trapping in persistent 
configurations. The result is a method by which time-step error is made nearly negligible 
for diffusion QMC with drift. It allows very large time steps without significant error, 
and the calculation efforts required for very high accuracy are correspondingly reduced. 

Comparisons of time-step errors for old and new algorithms can be made with the 
aid of figures 5 and 6. In figure 5 the effect of time-step size on calculated energy is 
shown for the H *P, system using the simplest of diffusion algorithms and using a first 
modification. In figure 6 a similar plot illustrates in the case of Be the time-step error 
for a basic algorithm and the reduction in time-step error for the advanced algorithm 
[8] described above. The changes in energy and time scales from figure 5 to figure 6 
should be noted. In figure 6 the time-step error at AT = 0.20 a.u. for the advanced 
algorithm is 0.OOO 10 hartrees, a factor of approximately 1500 lower than that of the 
simple algorithm. 

7. Applications to simple atoms and molecules 
The Be atom has served as an excellent sample problem for testing fixed-node 

procedures. The total energy is accurately known from spectroscopic measurements of 
the energy required for the removal of two electrons together with accurate calculations 
and measurements of the energy of the helium-like ion Be++. Analytic variational 
calculations for Be are some of the most accurate analytic variational calculations 
available. Thus, there are very good energies for comparisons. 

The most accurate fixed-node QMC calculations for Be are those by Umrigar et al. 
[8] using the advanced time-step algorithm described above. They obtained a 
non-relativistic energy of - 14.667 18 2 0.000 03 hartrees. The lowest-energy analytic 
variational calculation is that by Olsen and Sundholm 147,481 who used a 
650 000-determinant multiconfiguration wavefunction to obtain a non-relativistic total 
energy of - 14665 57 hartrees. A double extrapolation to the limits of an infinitely 
large basis set and an infinite number of determinants yields an energy 
of - 14.667 37 2 0.000 03 hartrees. The corresponding ‘experimental’ value is a 
non-relativistic energy of - 14.667 375 2 0.000 025 hartrees, obtained from the 
measured relativistic value of - 14.669 331 hartrees 1491, corrected by 
+ 0.001 956 ? 0.000 025 hartrees to remove the effects of mass polarization, relativity, 
and the Lamb shift. These values are listed in table 1. 
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Figure 5. Illustration of time-step error in early calculations of the energy of the atom H 'P,. 
Open circles: simple algorithm. Filled circles: algorithm modified to reduce time-step 
error. From Anderson [43]. 

0 

0 

Figure 6. Illustration of the near elimination of time-step error in fixed-node calculations for 
the Be atom. Open circles: simple algorithm. Open squares: advanced algorithm. From 
Umrigar, Nightingale, and Runge 181. 
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100 J .  B. Anderson 

Table 1. Comparisons of calculated and measured energies for Be. 

Authors (date) 
notes 

Energy 
(hartrees) 

~~ ~~~ 

Umrigar, Nightingale, and Runge [8] (1993) 

Olsen and Sundholm [47,48] (1991) 
fixed-node DQMC - 14.667 18 t 0-00003 

analytic variational 

extrapolated to limit of large basis set 
650 000-determinant multiconfiguration 

and number of configurations 

- 14.665 57 

- 14.667 37 2 0.000 03 
Holmstrom and Johansson [49] (1 969) 

measurement of ionization potential 
together with calculated Bef+ 
giving experimental energy - 14669331 
'corrected' to non-relativistic - 14.667 375 ? 0-000 025 

As may be seen in table 1 the energy given by the fixed-node quantum Monte Carlo 
calculation for Be lies + 0.001 61 ? 0.00003 below the lowest-energy variational 
result and only f 0.000 19 2 0.00003 above the corresponding non-relativistic 
experimental value. The doubly-extrapolated variational result and the experimental 
value are in excellent agreement. The node-location error in the QMC calculation has 
been reduced to the very small value of + O-OOO 19 2 0-0oO 03 hartrees by the use of 
the very accurate compact trial wavefunction obtained from careful optimization. The 
success of the fixed-node QMC calculation illustrates such calculations can compete 
with analytic variational calculations even in the case of one-centre systems for which 
analytic variational calculations are extremely accurate. 

The LiH molecule is another species which has received much attention in QMC 
calculations as well as analytic variational calculations. The spectroscopy and 
energetics of the molecule are well known and have been reviewed recently by Stwalley 
and Zemke [50]. More than twenty different QMC calculations of the several types have 
been made for LiH and most of these are fixed-node calculations. We list them all in 
table 2 and include for completeness other types of QMC calculations for LiH. The 
various calculations were undertaken for the investigation of several different 
questions-questions in regard to time-step error, trial functions properly specifying 
node locations, released-node techniques, the incorporation of relativistic effects, 
GFQMC algorithms, model Hamiltonians, and energy derivatives-as well for the 
accurate determination of the energy of the molecule. 

Calculations have been carried out for LiH at an internuclear distance of 3.0 15 bohrs 
with node locations specified by several different trial functions. The lowest-energy 
accurate fixed-node results are those given in [%I, [58],  [641,[65], and [711 with typical 
non-relativistic energies of approximately - 8-0700 _+ 0.0004 hartrees. The exact 
value for the non-relativistic energy is estimated to be - 8-07021 hartrees. The errors 
resulting from inexact node locations appear to be about 0-0002 hartrees for the best 
trial wavefunctions used. The statistical uncertainty in the calculations is similar in size 
to the fixed-node error and this prevents a useful comparison of the accuracies of the 
node structures used. The difference, if any, in the fixed-node error for a 
single-determinant function is difficult to distinguish from that for four-determinant 
MCSCF functions. Nevertheless, it seems likely that a much more accurate trial 
wavefunction, like that used for Be as described above, will be found useful. 
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Table 2 (part 1). Quantum Monte Carlo calculations for LiH. 

Authors (date) 
notes (internuclear distance, bohrs) 

"Energy 
(hartrees) 

Moskowitz, Schmidt, Lee, and Kalos [51] (1982) 

Reynolds, Ceperley, Alder, and Lester [lo] (1982) 

Ceperley 1521 (1983) 

Handy [53] (1984) 

Oskuz 1541 (1984) 

Ceperley and Alder 1221 (1984) 

fixed-node, DQMC with time-step error 

fixed-node DQMC with time-step error 

fixed-node GFQMC 

See [56] 

fixed-node (approximate) DQMC (R = 3.000) 

fixed-node GFQMC 
released-node GFQMC 

Wells [55] (1985) 
fixed-node DQMC with correlated walks 

Harrison and Handy [56] (1985) 
fixed-node DQMC 

Moskowitz and Schmidt [26] (1986) 
fixed-node GFQMC (R = 3-010) 
also other distances 

Schmidt and Moskowitz [57] (1986) 
See [26] 

Bamett, Reynolds, and Lester [58] (1987) 
fixed-node DQMC 

Rothstein, Patil, and Vrbik [46] (1987) 
fixed-node DQMC 
several algorithms 

fixed-node DQMC 

fixed-node DQMC 
with extrapolation for time-step 

fixed-node DQMC with 
relativistic correction as a perturbation 

East, Rothstein, and Vrbik [59] (1988) 

DePasquale, Rothstein, and Vrbik [60] (1988) 

Vrbik, DePasquale, and Rothstein [61] (1988) 

- 8.0724 2 0.0006 

- 8-067 t 0.002 

- 8.066 5 0.004 

- 8.075 5 0.019 

- 8.067 2 0.001 
- 8.071 5 OQO1 

- 8.059 2 0003 

- 8.0697 2 0.0003 

- 8.07 1 t 0.002 

- 8.0700 5 0-0004 

- 8.0667 t 0.0006 

- 8.0673 i 0-0014 

*Non-relativistic, for internuclear distance R = 3.01 5 bohrs unless noted. 

The two most accurate released-node calculations for LiH, giving energies 
without node-location error, are those by Caffarel and Ceperley [68] giving 
- 8.0700 2 0.0002 hartrees and by Chen and Anderson [7 I] giving 
- 8.070 2 1 5 0.000 05 hartrees. These are in agreement with the estimated true energy 
of - 8.070 21 hartrees within their statistical uncertainties. 

Thelowest-energy analytic variational calculation for LiH at 3-015 bohrs is that by 
Handy et aZ. [72] with a trial function of 132015 determinants obtained from single 
and double substitutions with 168 basis functions yielding an expectation value of 
- 8-069 04 hartrees. This energy is 0.0012 hartrees above the estimated exact 
non-relativistic energy. The difference is more than a factor of ten greater than the 
uncertainty in the best released-node calculation. 

(One advantage of 'exact' calculations is illustrated by the record for LiH. The 
estimated exact value of the energy reported by Handy et a1 [72] for comparison with 
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102 J. B. Anderson 

Table 2 (part 2). Quantum Monte Carlo calculations for Lih. 

Authors (date) 
notes (internuclear distance, bohrs) 

~~ ~ 

*Energy 
(hartrees) 

Sun, Reynolds, Owen, and Lester [62] (1989) 
fixed-node DQMC 
varied correlation functions 

Carlson, Moskowitz, and Schmidt [63] (1989) 
two-electron GFQMC 
with model Hamiltonian-dissociation energy 

fixed-node DQMC 
to obtain derivatives of operators 

fixed-node DQMC 
released-node DQMC 

VQMC with four configurations 
> 100 parameters 

Bueckert, Rothstein, and Vrbik [67] (1992) 
VQMC 
with estimate of relativistic correction 

fixed-node DQMC 
released-node DQMC 

fixed-node GFQMC 

fixed-node DQMC 
variation of ground state-energy with geometry 

released mode GFQMC 

Vrbik, Legare, and Rothstein [64] ( 1990) 

Caffarel, Gaeda, and Ceperley 1651 (1991) 

Bueckert, Rothstein, and Vrbik [66] (1992) 

Caffarel and Ceperley I681 (1992) 

Subramaniam, Lee, Schmidt, and Moskowitz [69] (1992) 

Vrbik and Rothstein [70] (1992) 

Chen and Anderson [71] (1994) 

- 8-071 2 0.002 

- 8-0691 2 04)006 
- 8.070 2 0.00 1 

- 8.0669 t 0.0007 

- 8-0680 2 0.0006 
- 8.0700 t 0.0002 

- 8.0699 t 0.0010 

- 8.070 21 -C 0-000 05 

*Non-relativistic, for internuclear distance R = 3-015 bohrs unless noted. 

their upper bound was slightly in error. At - 8-070 49 hartrees that estimated value was 
inconsistent with the result of - 8.0700 5 0.000 2 hartrees determined in the 
released-node calculations by Caffarel and Ceperley [7 11 and these authors corrected 
the earlier estimate to obtain the estimated exact value of - 8.07023 hartrees. This is 
a case in which the higher accuracy and known uncertainty of a QMC calculation 
resulted in the correction of an ‘experimental’ value.) 

For the methane molecule fixed-node DQMC calculations by Garmer and Anderson 
[ 111 gave a total electronic energy 30 kcal mole - below the lowest-energy analytic 
variational calculations and only 4.8 2 1.4 kcal mole - above the experimental 
non-relativistic energy. The QMC calculations recovered 97% of the correlation energy. 
A comparison of several relevant calculations for methane is given in table 3. 

The methane calculations were carried out using a single-determinant trial function 
of double-zeta STO quality obtained from an analytic fit to the function given by a 
Hartree-Fock calculation with a standard Gaussian basis set. The double-zeta function 
was found superior to a single-zeta function which gave an energy approximately 
10 kcal mole- higher. In each case the single-determinant function was multiplied by 
Jastrow functions for each possible pair of electron-electron interactions to produce a 
partial correlation of electron positions without affecting node locations. As may be 
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Table 3. Comparison of theoretical predictions and experimental measurement for methane*. 

Method 

Energy 
Total Correlation above 

energy energy exact 
(hartrees) (%) (kcal rnol - ') Reference 

____ 

Hartree-Foc k 
Minimal (SZ) STO's - 40-1212 1731 
Double-zeta S T O s  - 40. I728 214.1 [I 11 
Estimated limit - 40.2 19 0 185,l [741 

extended basis CT - 40.4584 81 34-9 [751 

fixed-node QMC - 40.48 I f 0.002 97 4.8 I1 11 

Analytic variational 

Quantum Monte Carlo 

Experimental 
(non-relativistic) - 40.5 14 f 0.002 100 0.0 174,761 

*Rc-H = 2.05 bohrs. 

Table 4. a. bA sampling of calculations for the reaction F + Hz + + H. 

E(F + Hz) E (saddle) E(HF + H) 
E(F + H2) - E (exact) - E(F + H2) - E(F + H2) 

Total Error Barrier Exoergicity 
Authors Date Type (hartrees) (kcal rnol - I )  (kcal mol - ') (kcal mol - ') 

[77] BPOS 1971 
[78] BOPS 1972 
[79] BT 1987 
[80] KSW 1991 
[Sl] USL9 1977 
[82] WKW 1992 
[83] SSBT 1985 
[84] FBS 1984 
[81] USL8 1977 
[85] BWLTJ 1988 
[86] Scu 199 I 
[I21 GA 1988 

[87] exact 

analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
analyt. var. 
FN-QMC 

- 100.5425 
- 100.5620 

- 100.7122 
- 100.7 125 
- 100.7874 
- 100.7876 
- 100.7892 
- 100.7975 

- 100.8290 
- 100-8923 

- 100.905 8 

227.9 
2 15.7 
1 60.0 
121.5 
121.3 
74-3 
74.2 
73.2 
68.0 

'52.0 
48.2 

8.5 

0.0 

~ 

5.72 
1.66 
4.50 
3.17 
3.93 
1.78 
3.69 
3.24 
6.03 
2.63 
2-05 

4.5 2 0-6 

18.9 
34-5 
28-8 
27.9 
32.6 
31.6 
33.7 
33.7 
28-7 
31.6 
31-6 
29.0 

31.6 

'Includes only calculations for which total electronic energies have been reported. 
See original papers for effects of various theoretically justified corrections. 
Approximate. 

seen in table 3 the expectation value for the energy of the double-zeta function 
is 30kcalmole-' above the Hartree-Fock limit. Use of the Jastrow factors lowers 
the expectation value by about 75 kcal mole - '. The additional lowering to 
4.8 2 1-4 kcal mole - above the experimental total energy results from exact solution 
of the Schrodinger equation within the restrictions af the fixed-node boundary 
conditions. 

The difficulties in making accurate predictions of the potential energy surface for 
the reaction F + HZ + HF + H illustrate some of the problems which occur for QMC 
calculations as well as those which occur for analytic variational calculations. 
The reaction is of special theoretical interest since it is one of the simplest exothermic 
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Figure 7. Electronic energies for the F-H-H system as given by several calculations. Barrier 
heights and exothermicities are indicated in kcal mol- I .  See table 4. BPOS-Bender, 
Pearson, O’Neill, and Schaefer, 1971, [77]. BOPS-Bender, O’Neill, Pearson, and 
Schaefer, 1972, [78]. BT-Bauschlicher and Taylor, 1987, [79]. KSW (not shown)- 
Knowles, Stark, and Werner, 1991, [80]. USL8 and USL9-Ungemach, Schaefer, and Liu, 
1977 [81]. WKW (not shown)-Wright, Kolbuszewski, and Wyatt, 1992, [82]. SSBT- 
Schwenke, Steckler, Brown, and Truhlar. 1985, [83]. FBS-Frisch, Binkley, and Schaefer, 
1984, [84]. BWLTJ-Bauschlicher, Walch, Langhoff, Taylor and Jaffe, 1988, [85]. 
Scu-Scuseria, 1991, [86]. GA-Gamer and Anderson (QMC), 1988, [12]. 

reactions and since there is a wealth of experimental data for it available from a variety 
of experiments. Excellent reactive scattering calculations have been made for several 
approximate potential surfaces. 

The results of calculations of all types to determine the barrier height for the reaction 
of F with H2 by are listed in table 4 and plotted in figure 7. For each set of calculations 
the expectation values of the energies are shown (left) for separated reactants F + Hz, 
(centre) for the saddle-point configuration F-H-H or a nearby point, and (right) for 
separated products HF + H. The energy of the saddle point relative to reactants and that 
of products relative to reactants are indicated for each set of calculations. The estimated 
exact non-relativistic total energies for reactants and products, available from 
experiment, are indicated by dashed lines. The experimental activation energy is in the 
range of 0.7 to 1.3 kcal mole- I .  An experimental barrier height is, of course, not directly 
available. It is probably in the range of 1.5 to 3-0 kcal mole - ’, but it might be outside 
that range. 

The general trend in total energies for analytic variational calculations is toward 
lower energies at later dates, but the relative value at the saddle point-the barrier 
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height-is highly variable. The lowest-energy analytic variational calculation is the 
coupled-cluster calculation by Scuseria [86] yielding a barrier height of 
2.05 kcal mole - and an energy for reactants 48.2 kcal mole - above the exact total 
energy. 

The fixed-node QMC calculations by Garmer and Anderson [12] gave a barrier 
height of 4-5 2 0-6 kcal mole- ' and an energy for reactants only 8.5 kcal mole - ' above 
the exact energy. The node structure for the calculations was that of a high quality 
single-determinant function obtained by fitting the results of a standard Gaussian SCF 
calculation. If the node structure for such a simple function is sufficiently accurate to 
give an error of only 8.5 kcalmole- ', one might expect simple MCSCF functions and 
better to five extremely low node-location errors. For systems like F-H-H this 
possibility remains open. 

The barrier height of 4.5 2 0-6 kcal mole - ' for collinear reaction of F with H2 

indicated by the QMC calculations is probably too high to be compatible with 
experimental results. But, it might be entirely correct. The favoured reaction path may 
pass through a bent F-H-H configuration. The QMC results for a bent configuration 
suggested the barrier for non-linear reaction may be somewhat lower than for collinear 
reaction, and this feature has now been found in several analytic variational calculations. 

The chief problems for the analytic variational calculations are the large errors in 
total energy and the uncertainties introduced by these errors when relative values of 
energies are calculated. Unless experimental data for similar situations is available one 
cannot judge in a particular case whether such errors in total energies cancel when 
relative values are calculated. 

The chief problems for the fixed-node QMC calculations are similar. Unless 
experimental data for similar situations is available one cannot judge whether the 
node-location errors, even though smaller, will cancel when relative values are 
calculated. 

For QMC calculations there is much less prior experience than for analytic 
variational calculations. A body of data is slowly being accumulated, but it is still too 
early to make any general conclusions. For all-electron calculations the nodal surface 
in the core region is likely to be greatest source of node-location error, and one might 
expect that cancellation of errors would be nearly complete. Further investigation is 
required. 

8. Effective potentials and effective Hamiltonians 
Quantum Monte Carlo calculations, like analytic variational calculations, can be 

considerably simplified by the use of effective potentials to replace core electrons tightly 
packed around nuclei. One expects and one hopes that, as in analytic variational 
calculations with effective potentials or with frozen core basis sets, the energies of the 
core electrons and their effect on valence electrons will be almost exactly cancelled in 
subtracting to obtain relative energies for nearly identical systems. Since the energies 
of core electrons in heavy atoms are usually very much greater than the energies of 
valence electrons, including core electrons in QMC calculations is very much more 
expensive computationally when statistical error in the total energy must be reduced. 
The advantages of eliminating core electrons are large in proportion to the number of 
core electrons eliminated. 

The effective potentials normally used in analytic variational calculations are 
non-local potentials which involve angular projection operators which cannot be simply 
transferred into QMC calculations. In the earliest QMC calculations to use effective 
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106 J .  B. Anderson 

potentials Hurley and Christiansen [88] avoided this difficulty with the use of local 
potentials V I ~  defined in terms of a trial wavefunction, 

where U is a conventional relativistic (or non-relativistic) effective potential. 
The use of effective potentials is, by its nature, not exact and introduces systematic 
errors which, in most treatments thus far, have been found to be small. In later work 
non-local effective potentials [ 89-9 11 have been used with success as have their 
more-complex counterparts, effective Hamiltonians. These too introduce systematic 
errors of finite size, but the errors are not easily analysed and not easily understood. 
For that reason it is difficult to make judgements about the relative merits of the several 
methods. Greater success in reproducing experimental observations might simply be 
the result of greater flexibility in more elaborate treatments. Questions of the relative 
utility and reliability of effective potentials and effective Hamiltonians have been 
discussed in some detail by Bachelet et al. [91] and by Christiansen [92]. 

A list of studies using effective potentials, model potentials, effective Hamiltonians, 
and related devices is given in table 5.  The typical first calculations for any research 
group are those to determine an electron affinity of a species such as Li, obtained by 
calculations of the energies of one and two electrons, respectively, in the field of an Li + 

(Is2) core potential, and subtraction of the energies. Several of these are listed in the 
table. Larger numbers of electrons are included in calculations of the electron affinities 
of species such as C1 atoms using neon core potentials and of the energies of multiple 
states of atoms such as Al, Sc, and Fe. Still larger numbers of electrons are included 
in treatments of solid silicon as a collection of 64 Si atoms with a total of 256 valence 
electrons [ 141. 

The results obtained by Christiansen [92] for the transition metal atoms Sc and Y 
illustrate the accuracies obtained in fixed-node diffusion quantum Monte Carlo 
calculations using simple effective potentials. In these calculations Christiansen used 
previously determined relativistic effective potentials for Sc and Y with 1 1  valence 
electrons to determine energies for the 'D and *F states of these atoms. The fixed-node 
calculations used simple SCF trial functions incorporating Jastrow electron-electron 
correlation functions and optimized for the ground states. The computed excitation 
energies for the transitions between the two states were 1.5(3) and 1-4(2)eV, 
respectively, for Sc and Y. These may be compared to the experimental values of 1-43 
and 1-36 eV, respectively. 

In further investigations of the accuracies of QMC calculations using effective 
potentials Lao and Christiansen [ 1071 calculated the valence correlation energy for Ne 
and found excellent agreement with previous full-CI benchmark calculations. They 
recovered 98 to 100% of the valence correlation energy and could detect no significant 
error due to the effective potential approximation. 

Overall, the use of effective potentials, model potentials, pseudopotentials, and 
pseudo-Hamiltonians of the several types has been found extremely useful in extending 
the range of fixed-node QMC calculations. To the extent to which the calculations can 
be checked for accuracy, by comparison of results with those of experiments and 
otherwise, there is every indication that such fixed-node QMC calculations are as 
accurate or more accurate than any other type of calculation currently available. 
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Table 5. Fixed-node QMC calculations with effective potentials. 

Authors (date) Species 

Hurley and Christiansen [88] ( 1  987) 
effective potentials 

Hammond, Reynolds, and Lester 1931 
(1987) effective potentials 

Christiansen [94] (1988) 
effective potentials 

Cristiansen and LaJohn [95] (1988) 
effective potentials 

Yoshida and Iguchi [96] (1988) 
model potentials 

Yoshida, Mizushima, and Iguchi [97] 
(1988) model potentials 

Carlson, Moskowitz, and Schmidt [98] 
(1989) model Hamiltonians 

Christiansen [99] (1989) 
effective potentials 

Bachelet, Ceperley, and Chiocchetti [91] 
(1989) pseudo-Hamiltonians 

Christiansen [ 1001 ( 1  990) 
effective potentials 

Shirley, Martin, Bachelet, and Ceperley 
[ 1011 ( 1  990) pseudopotentials 

Yoshida and Iguchi [ 1021 (1990) 
model potentials 

Foulkes and Schluter [89] (1990) 
pseudopotentials 

Li, Ceperley, and Martin [I41 (1991) 
pseudo-Hami ltonians 

Mitas, Shirley, and Ceperley [lo31 (1991) 
non-local pseudopotentials 

Christiansen [92] (1991) 
effective potentials 

Shirley, Mitas, and Martin [I041 (1991) 
partitioningiquasi-particle potentials 

Mitas [ 1051 (1992) pseudopotentials 
Flad, Savin, and Preuss [90] ( I  992) 

pseudopotentials 
Schrader, Yoshida, and Iguchi [ 1061 (1992) 

model potentials 
M. Lao and P. A. Christiansen [lo71 (1992) 

effective potentials 
Schrader, Yoshida, and Iguchi [lo81 (1993) 

model potentials 
Belohorec, Rothstein, and Vrbik [ 1091 

(1 993) related to pseudopotentials 

LULi- JUK- 

L&i+ Na/Na+ Mg/Mg+ NaWNa + H 

Be (three states)lBe+ 

Mgfw + 

Mg/Mg+ CdCa+ Sr/Sr+ 

CVCl 

Li/LiH Li212Li 

A1 (two states)/Al + 

NazR\la/Na - Ma + 

also Mg, Si C1 dimers and ions 

A1 (three states)/Al + 

Na, K, Si ions, dimers, dimer ions 

CdCa + Br/Br - 

indirect evaluations 

solid SiISi 

Si2iSiISi -/Si + /Si + + CdCu + /Cu - 

Sc (two states) Y (two states) 

Beme+ (four states) Na/Na+ (four states) 

Fe (two states) 
Beme+ also Mg, Ca, Sr, Ba 

SdSc + (four states) 

Li, Na, K, mixed dimers 

PSCVPS + c1 
Ne 

PsFlPs + F PsCllPs + C1 PsBrlPs + Br 

CuH (several states) 
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108 J .  B. Anderson 

9. Applications to Iarger systems 
The extension of QMC methods to problems of a large number of electrons has taken 

place mainly in the area of condensed matter systems. Standard approaches to 
condensed matter systems have often given good agreement with experimental 
measurements of structural properties, but they have very often failed in the prediction 
binding energies of crystalline materials. There is much current interest in predictions 
of the energetics of such materials as well as their electronic properties. There is also 
much interest in predicting structures, energetics, and related properties of the surfaces 
of solid materials. Advances in the computation of molecular dynamics have created 
a very large demand for accurate potential energy surfaces for systems with large 
numbers of electrons. 

One of the first applications of general QMC techniques to a problem in condensed 
matter was made by Fahy, Wang, and Louie [ 1 101 in variational QMC calculations for 
carbon (diamond), carbon (graphite), and silicon. They used pseudopotentials together 
with trial wavefunctions in the form of Slater determinants multiplied by Bijl-Jastrow 
factors. Cell sizes of up to 216 electrons (corresponding to 54 carbon atoms) were used. 
Their results for several basic properties of carbon (diamond) and of silicon are listed 
in table 6 along with experimental values. It may be seen that the agreement with 
experiment is excellent. 

Variational QMC calculations are the starting point for fixed-node QMC 
calculations. If the variational QMC calculations give good results one should expect 
even better from fixed-node calculations. This is indeed what has been observed in 
fixed-node calculations for solid silicon. Li, Ceperley, and Martin [ 141 made variational 
QMC calculations for silicon using pseudo-Hamiltonians as well as fixed-node QMC 
calculations using the same Hamiltonians. Some of their results are listed in table 6. 
It may be seen the fixed-node QMC results are in excellent agreement with experimental 
measurements. The variation of cohesive energy with lattice constant for both sets of 
calculations is shown in figure 8. In their variational calculations Li et al. [ 141 found 
a larger difference from experiment than Fahy el al. [ 1 101 and this suggests variational 
QMC calculations for these systems may be less accurate than supposed. There is no 
suggestion of any problem with the extremely accurate predictions of the fixed-node 
QMC calculations. 

In related work Natoli, Martin, and Ceperley [ 1 111 made fixed-node calculations 
of the crystal structure of atomic hydrogen. They determined energies for five different 
crystal structures (body-centred cubic, simple cubic, simple hexagonal, diamond, P-Sn) 
with varied densities using a range of system sizes from 8 to 432 atoms with and without 
fixed protons. The results show that low-coordination structures, particularly the 
diamond structure, are favoured at pressures below about 3 Mbars. 

10. Future directions 
As noted above, the demand for accurate potential energy surfaces for condensed 

matter systems is great. A similar demand exists for other large molecular systems, 
especially for biomolecules, protein structures and enzymes, with and without 
surrounding solvent molecules. We expect the number of applications attempted with 
quantum Monte Carlo methods to increase and the number of successful applications 
to increase as well. 

For systems of up to about ten electrons it seems likely that ‘exact’ quantum Monte 
Carlo methods-those which treat the node problem exactly- will within a relatively 
short time replace fixed-node calculations. The fixed-node quantum Monte Carlo 
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Table 6. Some QMC calculations of the energies and structures of solid materials. 

System 
Calculation 

Lattice Atomic Solid Cohesive 

(A) (eV/atom) (eV/atom) (eV/atom) 
Con2tant Energy Energy Energy 

Carbon (diamond) 
VQMC, pseudopotential [ 1 101 3.54 (3) - 147.93 (3) - 155.38 (6) 7.45 (7) 
Experimen ta 3.567 7.37 

Silicon 
VQMC. pseudopotential [ 1 101 5-40(4) - 103-42(3) - 108.23(6) 4.81 (7) 
VQMC, pseudo-Hamiltonian [14] 5.42(2) - 103.35 (3) - 107-73(2) 4-38(4) 
FN-QMC, pseudo-Hamiltonian [I41 5.45(2) - 103.56(2) - 108-07(2) 4.51 (3) 
Experimentb 5-430 4.63 (8) 

a See list in [ 1 101. 
bSee lists in [ I  101 and [14]. 

-108.2 I 1 I I 
4.5 5.0 5.5 6.0 6.5 

Lattice constant [XI 
Figure 8. Calculated total energy of silicon as a function of the lattice constant. Upper set of 

points: variational QMC. Lower set of points: fixed-node DQMC. The curves are fits of 
the Mumaghan equation of state to the calculated points. From Li, Ceperley, and Martin 
~ 4 1 .  
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110 I.  B. Anderson 

method will find its principle applications in calculations for the large systems. 
The major advances will come with faster machines and very much better trial 
wavefunctions, and perhaps a breakthrough in separating the determinants of 
trial wavefunctions into significant and insignificant parts. 
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